SEO基础

SEO基础

Products

当前位置:首页 > SEO基础 >

如何在济南找到专业的网站设计公司以推广南京网站?

96SEO 2026-02-19 23:12 0


TVM

relay.nn.batch_norm(simple_net,

如何在济南找到专业的网站设计公司以推广南京网站?

bn_gamma,

relay.Function(relay.analysis.free_vars(simple_net),

(batch_size,

testing.create_workload(simple_net)使用

CUDA

logginglogging.basicConfig(levellogging.DEBUG)

dump

sizedata_shape).astype(float32)

module

runtime.GraphModule(lib[default](dev))

data)

/workspace/python/tvm/driver/build_module.py:268:

UserWarning:

{pad_temp.shared[(((((threadIdx.z*15)

threadIdx.x)/6)

placeholder[((((((((blockIdx.y*112)

blockIdx.x)

0.000000f)pad_temp.shared[(((((((threadIdx.z*15)

threadIdx.x)*3)

placeholder[((((((((blockIdx.y*112)

blockIdx.x)

0.000000f)pad_temp.shared[(((((((threadIdx.z*15)

threadIdx.x)*3)

placeholder[((((((((blockIdx.y*112)

blockIdx.x)

{placeholder.shared[(((((threadIdx.z*4)

(threadIdx.x/3))*3)

3))*3)]placeholder.shared[((((((threadIdx.z*4)

(threadIdx.x/3))*3)

1)]placeholder.shared[((((((threadIdx.z*4)

(threadIdx.x/3))*3)

(pad_temp.shared[threadIdx.x]*placeholder.shared[(threadIdx.z*36)]))compute[1]

(compute[1]

18)]*placeholder.shared[(threadIdx.z*36)]))compute[2]

(compute[2]

36)]*placeholder.shared[(threadIdx.z*36)]))compute[3]

(compute[3]

54)]*placeholder.shared[(threadIdx.z*36)]))compute[4]

(compute[4]

72)]*placeholder.shared[(threadIdx.z*36)]))compute[5]

(compute[5]

90)]*placeholder.shared[(threadIdx.z*36)]))compute[6]

(compute[6]

108)]*placeholder.shared[(threadIdx.z*36)]))compute[7]

(compute[7]

126)]*placeholder.shared[(threadIdx.z*36)]))compute[8]

(compute[8]

(pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36)

9)]))compute[9]

18)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[10]

36)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[11]

54)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[12]

72)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[13]

90)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[14]

108)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[15]

126)]*placeholder.shared[((threadIdx.z*36)

9)]))compute[16]

(pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36)

18)]))compute[17]

18)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[18]

36)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[19]

54)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[20]

72)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[21]

90)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[22]

108)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[23]

126)]*placeholder.shared[((threadIdx.z*36)

18)]))compute[24]

(pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36)

27)]))compute[25]

18)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[26]

36)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[27]

54)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[28]

72)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[29]

90)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[30]

108)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[31]

126)]*placeholder.shared[((threadIdx.z*36)

27)]))compute[0]

1)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[1]

19)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[2]

37)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[3]

55)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[4]

73)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[5]

91)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[6]

109)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[7]

127)]*placeholder.shared[((threadIdx.z*36)

1)]))compute[8]

1)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[9]

19)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[10]

37)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[11]

55)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[12]

73)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[13]

91)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[14]

109)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[15]

127)]*placeholder.shared[((threadIdx.z*36)

10)]))compute[16]

1)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[17]

19)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[18]

37)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[19]

55)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[20]

73)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[21]

91)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[22]

109)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[23]

127)]*placeholder.shared[((threadIdx.z*36)

19)]))compute[24]

1)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[25]

19)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[26]

37)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[27]

55)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[28]

73)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[29]

91)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[30]

109)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[31]

127)]*placeholder.shared[((threadIdx.z*36)

28)]))compute[0]

2)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[1]

20)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[2]

38)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[3]

56)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[4]

74)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[5]

92)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[6]

110)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[7]

128)]*placeholder.shared[((threadIdx.z*36)

2)]))compute[8]

2)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[9]

20)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[10]

38)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[11]

56)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[12]

74)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[13]

92)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[14]

110)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[15]

128)]*placeholder.shared[((threadIdx.z*36)

11)]))compute[16]

2)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[17]

20)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[18]

38)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[19]

56)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[20]

74)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[21]

92)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[22]

110)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[23]

128)]*placeholder.shared[((threadIdx.z*36)

20)]))compute[24]

2)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[25]

20)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[26]

38)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[27]

56)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[28]

74)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[29]

92)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[30]

110)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[31]

128)]*placeholder.shared[((threadIdx.z*36)

29)]))compute[0]

18)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[1]

36)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[2]

54)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[3]

72)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[4]

90)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[5]

108)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[6]

126)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[7]

144)]*placeholder.shared[((threadIdx.z*36)

3)]))compute[8]

18)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[9]

36)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[10]

54)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[11]

72)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[12]

90)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[13]

108)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[14]

126)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[15]

144)]*placeholder.shared[((threadIdx.z*36)

12)]))compute[16]

18)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[17]

36)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[18]

54)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[19]

72)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[20]

90)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[21]

108)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[22]

126)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[23]

144)]*placeholder.shared[((threadIdx.z*36)

21)]))compute[24]

18)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[25]

36)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[26]

54)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[27]

72)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[28]

90)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[29]

108)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[30]

126)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[31]

144)]*placeholder.shared[((threadIdx.z*36)

30)]))compute[0]

19)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[1]

37)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[2]

55)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[3]

73)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[4]

91)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[5]

109)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[6]

127)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[7]

145)]*placeholder.shared[((threadIdx.z*36)

4)]))compute[8]

19)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[9]

37)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[10]

55)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[11]

73)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[12]

91)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[13]

109)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[14]

127)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[15]

145)]*placeholder.shared[((threadIdx.z*36)

13)]))compute[16]

19)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[17]

37)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[18]

55)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[19]

73)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[20]

91)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[21]

109)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[22]

127)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[23]

145)]*placeholder.shared[((threadIdx.z*36)

22)]))compute[24]

19)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[25]

37)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[26]

55)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[27]

73)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[28]

91)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[29]

109)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[30]

127)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[31]

145)]*placeholder.shared[((threadIdx.z*36)

31)]))compute[0]

20)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[1]

38)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[2]

56)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[3]

74)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[4]

92)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[5]

110)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[6]

128)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[7]

146)]*placeholder.shared[((threadIdx.z*36)

5)]))compute[8]

20)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[9]

38)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[10]

56)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[11]

74)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[12]

92)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[13]

110)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[14]

128)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[15]

146)]*placeholder.shared[((threadIdx.z*36)

14)]))compute[16]

20)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[17]

38)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[18]

56)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[19]

74)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[20]

92)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[21]

110)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[22]

128)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[23]

146)]*placeholder.shared[((threadIdx.z*36)

23)]))compute[24]

20)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[25]

38)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[26]

56)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[27]

74)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[28]

92)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[29]

110)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[30]

128)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[31]

146)]*placeholder.shared[((threadIdx.z*36)

32)]))compute[0]

36)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[1]

54)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[2]

72)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[3]

90)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[4]

108)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[5]

126)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[6]

144)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[7]

162)]*placeholder.shared[((threadIdx.z*36)

6)]))compute[8]

36)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[9]

54)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[10]

72)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[11]

90)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[12]

108)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[13]

126)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[14]

144)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[15]

162)]*placeholder.shared[((threadIdx.z*36)

15)]))compute[16]

36)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[17]

54)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[18]

72)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[19]

90)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[20]

108)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[21]

126)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[22]

144)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[23]

162)]*placeholder.shared[((threadIdx.z*36)

24)]))compute[24]

36)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[25]

54)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[26]

72)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[27]

90)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[28]

108)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[29]

126)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[30]

144)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[31]

162)]*placeholder.shared[((threadIdx.z*36)

33)]))compute[0]

37)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[1]

55)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[2]

73)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[3]

91)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[4]

109)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[5]

127)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[6]

145)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[7]

163)]*placeholder.shared[((threadIdx.z*36)

7)]))compute[8]

37)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[9]

55)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[10]

73)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[11]

91)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[12]

109)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[13]

127)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[14]

145)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[15]

163)]*placeholder.shared[((threadIdx.z*36)

16)]))compute[16]

37)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[17]

55)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[18]

73)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[19]

91)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[20]

109)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[21]

127)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[22]

145)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[23]

163)]*placeholder.shared[((threadIdx.z*36)

25)]))compute[24]

37)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[25]

55)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[26]

73)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[27]

91)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[28]

109)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[29]

127)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[30]

145)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[31]

163)]*placeholder.shared[((threadIdx.z*36)

34)]))compute[0]

38)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[1]

56)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[2]

74)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[3]

92)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[4]

110)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[5]

128)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[6]

146)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[7]

164)]*placeholder.shared[((threadIdx.z*36)

8)]))compute[8]

38)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[9]

56)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[10]

74)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[11]

92)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[12]

110)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[13]

128)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[14]

146)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[15]

164)]*placeholder.shared[((threadIdx.z*36)

17)]))compute[16]

38)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[17]

56)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[18]

74)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[19]

92)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[20]

110)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[21]

128)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[22]

146)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[23]

164)]*placeholder.shared[((threadIdx.z*36)

26)]))compute[24]

38)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[25]

56)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[26]

74)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[27]

92)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[28]

110)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[29]

128)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[30]

146)]*placeholder.shared[((threadIdx.z*36)

35)]))compute[31]

164)]*placeholder.shared[((threadIdx.z*36)

35)]))}}tensor[(((((blockIdx.y*112)

blockIdx.x)

max(((compute[0]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[1]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[2]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[3]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[4]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[5]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[6]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[7]*placeholder[(threadIdx.z*4)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[8]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[9]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[10]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[11]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[12]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[13]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[14]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[15]*placeholder[((threadIdx.z*4)

1)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[16]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[17]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[18]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[19]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[20]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[21]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[22]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[23]*placeholder[((threadIdx.z*4)

2)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[24]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[25]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[26]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[27]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[28]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[29]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[30]*placeholder[((threadIdx.z*4)

3)])

0.000000f)tensor[((((((blockIdx.y*112)

blockIdx.x)

max(((compute[31]*placeholder[((threadIdx.z*4)

3)])

testing.create_workload(simple_net)

target

sizedata_shape).astype(float32)

module

runtime.GraphModule(lib[default](dev))

data)

/workspace/python/tvm/driver/build_module.py:268:

UserWarning:

0tvm_call_packed(tvm.contrib.cudnn.conv2d.forward,

tvm_stack_make_array(placeholder,

224,

tvm_stack_make_array(placeholder,

3),

(ax0.ax1.fused.ax2.fused.ax3.fused.outer,

{if

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))

threadIdx.x))))

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816)

threadIdx.x)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224)

224)*224)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*32))

224)))

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176)

16)*50176))]

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816)

threadIdx.x)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224)

224)*224)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*32))

224)))

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176)

16)*50176))]*placeholder[(((((blockIdx.x*512)

threadIdx.x)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176)

16)])

placeholder[(((((blockIdx.x*512)

threadIdx.x)

(ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176)

16)]),

tvm.testing.assert_allclose(out_cuda,

out_cudnn,

cuBLAS它将在全连接层relay.dense内使用。

若要用

cuBLAS请将

其次外部库限制了计算图编译期间算子融合的可能性如上所示。

TVM

Relay

旨在通过联合算子级别和计算图级别优化在各种硬件上实现最佳性能。

为了实现这个目标应该继续为

TVM

Notebookusing_external_lib.ipynb



SEO优化服务概述

作为专业的SEO优化服务提供商,我们致力于通过科学、系统的搜索引擎优化策略,帮助企业在百度、Google等搜索引擎中获得更高的排名和流量。我们的服务涵盖网站结构优化、内容优化、技术SEO和链接建设等多个维度。

百度官方合作伙伴 白帽SEO技术 数据驱动优化 效果长期稳定

SEO优化核心服务

网站技术SEO

  • 网站结构优化 - 提升网站爬虫可访问性
  • 页面速度优化 - 缩短加载时间,提高用户体验
  • 移动端适配 - 确保移动设备友好性
  • HTTPS安全协议 - 提升网站安全性与信任度
  • 结构化数据标记 - 增强搜索结果显示效果

内容优化服务

  • 关键词研究与布局 - 精准定位目标关键词
  • 高质量内容创作 - 原创、专业、有价值的内容
  • Meta标签优化 - 提升点击率和相关性
  • 内容更新策略 - 保持网站内容新鲜度
  • 多媒体内容优化 - 图片、视频SEO优化

外链建设策略

  • 高质量外链获取 - 权威网站链接建设
  • 品牌提及监控 - 追踪品牌在线曝光
  • 行业目录提交 - 提升网站基础权威
  • 社交媒体整合 - 增强内容传播力
  • 链接质量分析 - 避免低质量链接风险

SEO服务方案对比

服务项目 基础套餐 标准套餐 高级定制
关键词优化数量 10-20个核心词 30-50个核心词+长尾词 80-150个全方位覆盖
内容优化 基础页面优化 全站内容优化+每月5篇原创 个性化内容策略+每月15篇原创
技术SEO 基本技术检查 全面技术优化+移动适配 深度技术重构+性能优化
外链建设 每月5-10条 每月20-30条高质量外链 每月50+条多渠道外链
数据报告 月度基础报告 双周详细报告+分析 每周深度报告+策略调整
效果保障 3-6个月见效 2-4个月见效 1-3个月快速见效

SEO优化实施流程

我们的SEO优化服务遵循科学严谨的流程,确保每一步都基于数据分析和行业最佳实践:

1

网站诊断分析

全面检测网站技术问题、内容质量、竞争对手情况,制定个性化优化方案。

2

关键词策略制定

基于用户搜索意图和商业目标,制定全面的关键词矩阵和布局策略。

3

技术优化实施

解决网站技术问题,优化网站结构,提升页面速度和移动端体验。

4

内容优化建设

创作高质量原创内容,优化现有页面,建立内容更新机制。

5

外链建设推广

获取高质量外部链接,建立品牌在线影响力,提升网站权威度。

6

数据监控调整

持续监控排名、流量和转化数据,根据效果调整优化策略。

SEO优化常见问题

SEO优化一般需要多长时间才能看到效果?
SEO是一个渐进的过程,通常需要3-6个月才能看到明显效果。具体时间取决于网站现状、竞争程度和优化强度。我们的标准套餐一般在2-4个月内开始显现效果,高级定制方案可能在1-3个月内就能看到初步成果。
你们使用白帽SEO技术还是黑帽技术?
我们始终坚持使用白帽SEO技术,遵循搜索引擎的官方指南。我们的优化策略注重长期效果和可持续性,绝不使用任何可能导致网站被惩罚的违规手段。作为百度官方合作伙伴,我们承诺提供安全、合规的SEO服务。
SEO优化后效果能持续多久?
通过我们的白帽SEO策略获得的排名和流量具有长期稳定性。一旦网站达到理想排名,只需适当的维护和更新,效果可以持续数年。我们提供优化后维护服务,确保您的网站长期保持竞争优势。
你们提供SEO优化效果保障吗?
我们提供基于数据的SEO效果承诺。根据服务套餐不同,我们承诺在约定时间内将核心关键词优化到指定排名位置,或实现约定的自然流量增长目标。所有承诺都会在服务合同中明确约定,并提供详细的KPI衡量标准。

SEO优化效果数据

基于我们服务的客户数据统计,平均优化效果如下:

+85%
自然搜索流量提升
+120%
关键词排名数量
+60%
网站转化率提升
3-6月
平均见效周期

行业案例 - 制造业

  • 优化前:日均自然流量120,核心词无排名
  • 优化6个月后:日均自然流量950,15个核心词首页排名
  • 效果提升:流量增长692%,询盘量增加320%

行业案例 - 电商

  • 优化前:月均自然订单50单,转化率1.2%
  • 优化4个月后:月均自然订单210单,转化率2.8%
  • 效果提升:订单增长320%,转化率提升133%

行业案例 - 教育

  • 优化前:月均咨询量35个,主要依赖付费广告
  • 优化5个月后:月均咨询量180个,自然流量占比65%
  • 效果提升:咨询量增长414%,营销成本降低57%

为什么选择我们的SEO服务

专业团队

  • 10年以上SEO经验专家带队
  • 百度、Google认证工程师
  • 内容创作、技术开发、数据分析多领域团队
  • 持续培训保持技术领先

数据驱动

  • 自主研发SEO分析工具
  • 实时排名监控系统
  • 竞争对手深度分析
  • 效果可视化报告

透明合作

  • 清晰的服务内容和价格
  • 定期进展汇报和沟通
  • 效果数据实时可查
  • 灵活的合同条款

我们的SEO服务理念

我们坚信,真正的SEO优化不仅仅是追求排名,而是通过提供优质内容、优化用户体验、建立网站权威,最终实现可持续的业务增长。我们的目标是与客户建立长期合作关系,共同成长。

提交需求或反馈

Demand feedback