96SEO 2026-02-20 02:12 0
。

专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】#xff0c;共同学习交流~
小伙伴们好我是阿旭。
专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源可关注公-仲-hao:【阿旭算法与机器学习】共同学习交流~
项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】11.【基于YOLOv8深度学习的安全帽目标检测系统】
二、机器学习实战专栏【链接】已更新31期欢迎关注持续更新中~~
摘要火灾是一种常见的灾害对人们的生命财产安全造成极大的威胁。
及时发现火源并采取措施扑灭火源是预防火灾的关键。
火焰烟雾检测技术可以帮助我们快速、准确地发现火源为火灾的及时扑救提供有力支持。
本文基于YOLOv8深度学习框架通过979张图片训练了一个进行火焰烟雾的目标检测模型准确率高达89%。
并基于此模型开发了一款带UI界面的火焰烟雾检测系统可用于实时检测场景中的火焰及烟雾更方便进行功能的展示。
该系统是基于python与PyQT5开发的支持图片、视频以及摄像头进行目标检测并保存检测结果。
本文提供了完整的Python代码和使用教程给感兴趣的小伙伴参考学习完整的代码资源文件获取方式见文末。
基本功能演示前言一、软件核心功能介绍及效果演示软件主要功能1图片检测演示2视频检测演示3摄像头检测演示4保存图片与视频检测结果
火焰烟雾检测在日常生活和工作中具有重要的意义。
火灾是一种常见的灾害对人们的生命财产安全造成极大的威胁。
及时发现火源并采取措施扑灭火源是预防火灾的关键。
火焰烟雾检测技术可以帮助我们快速、准确地发现火源为火灾的及时扑救提供有力支持。
家庭场景在家庭生活中通过使用火焰烟雾检测系统可以实时监控家中的火源情况一旦发现异常立即发出警报提醒家庭成员采取措施避免火灾事故的发生。
商业场所在商场、酒店、餐厅等公共场所火焰烟雾检测系统可以作为消防设施的一部分帮助管理人员及时发现火源保障人员和财产安全。
工业环境在工厂、仓库等工业环境中火焰烟雾检测系统可以有效防止火灾事故的发生确保生产过程的安全顺利进行。
交通运输在公共交通工具如火车、汽车、飞机等上火焰烟雾检测系统可以实时监测车内火源情况为乘客提供安全的出行环境。
森林防火在森林、草原等易燃区域火焰烟雾检测系统可以帮助护林员及时发现火源迅速组织扑救工作减少火灾对生态环境的破坏。
因此火焰烟雾检测技术在保障人们生命财产安全方面发挥着重要作用通过使用相关系统我们可以更加高效地管理和维护各类场所的安全秩序。
博主通过搜集火焰及烟雾的相关数据图片根据YOLOv8的目标检测技术基于python与Pyqt5开发了一款界面简洁的火焰烟雾检测系统可支持图片、视频以及摄像头检测同时可以将图片或者视频检测结果进行保存。
点击图片图标选择需要检测的图片或者点击文件夹图标选择需要批量检测图片所在的文件夹操作演示如下
点击保存按钮会对视频检测结果进行保存存储路径为save_data目录下。
注1.右侧目标位置默认显示置信度最大一个目标位置。
所有检测结果均在左下方表格中显示。
点击视频图标打开选择需要检测的视频就会自动显示检测结果。
点击保存按钮会对视频检测结果进行保存存储路径为save_data目录下。
点击摄像头图标可以打开摄像头可以实时进行检测再次点击摄像头图标可关闭摄像头。
点击保存按钮后会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。
检测的图片与视频结果会存储在save_data目录下。
YOLOv8是一种前沿的目标检测技术它基于先前YOLO版本在目标检测任务上的成功进一步提升了性能和灵活性。
主要的创新点包括一个新的骨干网络、一个新的
通过网络上搜集关于火焰及烟雾的各类图片并使用LabelMe标注工具对每张图片中的目标边框Bounding
Box及类别进行标注。
一共包含979张图片其中训练集包含877张图片验证集包含47张图片测试集包含55张图片部分图像及标注如下图所示。
图片数据的存放格式如下在项目同时将跌倒检测的图片分为训练集与验证集放入helmetData目录下。
同时我们需要新建一个data.yaml文件用于存储训练数据的路径及模型需要进行检测的类别。
YOLOv8在进行模型训练时会读取该文件的信息用于进行模型的训练与验证。
data.yaml的具体内容如下
E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\train
E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\val
E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\test
smoke]注train与val后面表示需要训练图片的路径建议直接写自己文件的绝对路径。
数据准备完成后通过调用train.py文件进行模型训练epochs参数用于调整训练的轮数batch参数用于调整训练的批次大小【根据内存大小调整最小为1】代码如下
model.train(datadatasets/FireSmokeData/data.yaml,
在深度学习中我们通常用损失函数下降的曲线来观察模型训练的情况。
YOLOv8在训练时主要包含三个方面的损失定位损失(box_loss)、分类损失(cls_loss)和动态特征损失dfl_loss在训练结束后可以在runs/目录下找到训练过程及结果文件如下所示
定位损失box_loss预测框与标定框之间的误差GIoU越小定位得越准
分类损失cls_loss计算锚框与对应的标定分类是否正确越小分类得越准
动态特征损失dfl_lossDFLLoss是一种用于回归预测框与目标框之间距离的损失函数。
在计算损失时目标框需要缩放到特征图尺度即除以相应的stride并与预测的边界框计算Ciou
Loss同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
这个过程是YOLOv8训练流程中的一部分通过计算DFLLoss可以更准确地调整预测框的位置提高目标检测的准确性。
我们通常用PR曲线来体现精确率和召回率的关系本文训练结果的PR曲线如下。
mAP表示Precision和Recall作为两轴作图后围成的面积m表示平均后面的数表示判定iou为正负样本的阈值。
mAP.5表示阈值大于0.5的平均mAP可以看到本文模型两类目标检测的mAP0.5已经达到了0.87以上平均值为0.89结果还是很不错的。
模型训练完成后我们可以得到一个最佳的训练结果模型best.pt文件在runs/trian/weights目录下。
我们可以使用该文件进行后续的推理检测。
TestFiles/fire2_mp4-28_jpg.rf.27cad783f34b8f9f162d91a0c5776350.jpg#
cv2.waitKey(0)执行上述代码后会将执行的结果直接标注在图片上结果如下
以上便是关于此款火焰烟雾检测系统的原理与代码介绍。
基于此模型博主用python与Pyqt5开发了一个带界面的软件系统即文中第二部分的演示内容能够很好的支持图片、视频及摄像头进行检测同时支持检测结果的保存。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件均已打包上传感兴趣的小伙伴可以通过下载链接自行获取。
关注下方名片G-Z-H【阿旭算法与机器学习】回复【软件】即可获取下载方式
本文涉及到的完整全部程序文件包括python源码、数据集、训练代码、UI文件、测试图片视频等见下图获取方式见文末
注意该代码基于Python3.9开发运行界面的主程序为MainProgram.py其他测试脚本说明见上图。
为确保程序顺利运行请按照程序运行说明文档txt配置软件运行所需环境。
关注下方名片GZH:【阿旭算法与机器学习】回复【软件】即可获取下载方式
以上便是博主开发的基于YOLOv8深度学习的火焰烟雾检测系统的全部内容由于博主能力有限难免有疏漏之处希望小伙伴能批评指正。
作为专业的SEO优化服务提供商,我们致力于通过科学、系统的搜索引擎优化策略,帮助企业在百度、Google等搜索引擎中获得更高的排名和流量。我们的服务涵盖网站结构优化、内容优化、技术SEO和链接建设等多个维度。
| 服务项目 | 基础套餐 | 标准套餐 | 高级定制 |
|---|---|---|---|
| 关键词优化数量 | 10-20个核心词 | 30-50个核心词+长尾词 | 80-150个全方位覆盖 |
| 内容优化 | 基础页面优化 | 全站内容优化+每月5篇原创 | 个性化内容策略+每月15篇原创 |
| 技术SEO | 基本技术检查 | 全面技术优化+移动适配 | 深度技术重构+性能优化 |
| 外链建设 | 每月5-10条 | 每月20-30条高质量外链 | 每月50+条多渠道外链 |
| 数据报告 | 月度基础报告 | 双周详细报告+分析 | 每周深度报告+策略调整 |
| 效果保障 | 3-6个月见效 | 2-4个月见效 | 1-3个月快速见效 |
我们的SEO优化服务遵循科学严谨的流程,确保每一步都基于数据分析和行业最佳实践:
全面检测网站技术问题、内容质量、竞争对手情况,制定个性化优化方案。
基于用户搜索意图和商业目标,制定全面的关键词矩阵和布局策略。
解决网站技术问题,优化网站结构,提升页面速度和移动端体验。
创作高质量原创内容,优化现有页面,建立内容更新机制。
获取高质量外部链接,建立品牌在线影响力,提升网站权威度。
持续监控排名、流量和转化数据,根据效果调整优化策略。
基于我们服务的客户数据统计,平均优化效果如下:
我们坚信,真正的SEO优化不仅仅是追求排名,而是通过提供优质内容、优化用户体验、建立网站权威,最终实现可持续的业务增长。我们的目标是与客户建立长期合作关系,共同成长。
Demand feedback