Products
96SEO 2025-07-17 15:02 2
在CentOS上实现PyTorch的并行计算能、分布式训练等。
在深厚度学领域,GPU因其有力巨大的并行计算能力成为了加速训练过程的关键工具之一。
import torch
torch.cuda.is_available
torch.cuda.set_device
class torch.cuda.device
torch.cuda.device_count
torch.cuda.get_device_name
torch.cuda.current_device
torch.device
torch.device
用`torch.cuda`包能许多些对CUDA的支持。
PyTorch给了许多种方式来实现许多GPU并行运算,
import torch
import torch.nn as nn
# 定义模型
class MyModel:
def __init__:
super.__init__
self.conv1 = nn.Conv2d
self.conv2 = nn.Conv2d
self.fc1 = nn.Linear
self.fc2 = nn.Linear
def forward:
x = F.relu)
x = F.max_pool2d
x = F.relu)
x = F.max_pool2d
x = x.view
x = F.relu)
x = self.fc2
return x
# 创建模型实例
model = MyModel
# 创建DataParallel实例
data_parallel_model = nn.DataParallel
# 训练模型
for data, target in dataloader:
output = data_parallel_model
loss = criterion
optimizer.zero_grad
loss.backward
optimizer.step
用`DistributedDataParallel`模块的示例:
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
def setup:
dist.init_process_group
def cleanup:
dist.destroy_process_group
def train:
setup
model = MyModel.to
ddp_model = DDP
# 训练模型
cleanup
if __name__ == "__main__":
world_size = 4
mp.spawn, nprocs=world_size, join=True)
PyTorch分布式训练能够将训练任务分配到优良几个计算节点上并行施行,显著提升模型训练的效率。
python -m torch.distributed.launch --nproc_per_node=4 train.py
,从而搞优良模型训练和推理的效率。
Demand feedback